ANSWER KEY - CLASS 12 - PHYSICS - P-1 - SET 1-2023-24

[1] [c] resultant force is zero, resultant torque anti - clockwise
[2] [b] direction B
[3] [c] graph /[a]
[4] [b] 10 ohm
[5] [b] away from the wire ab
[6] [a] $12 \times 10^{-7} \mathrm{~T}$
[7] [c] diamagnetic
[8] [a] fig.[i] diamagnetic \& fig.[ii] paramagnetic
[9] [d] energy
[10] [a] $2 \times 10^{-4} \mathrm{~F}$
[11] [b] $\frac{\lambda}{2}$
[12] [a] 1:2
[13] (c) If assertion is true, but reason is false.
[14] (d) If both assertion and reason are false.
[15] [a] If both assertion and reason are true, and reason is the true explanation of the assertion.
[16] (c) If assertion is true, but reason is false.
[17] Fig/explanation [$\left[\frac{1}{2}\right]$
Steps [1]
Final expression $\left[\frac{1}{2}\right]$
[18] $\mathrm{I}=\frac{E 1}{r 1}+\frac{E 2}{r 2}$
$\mathrm{E}=\left\{\frac{E 1}{r 1}+\frac{E 2}{r 2}\right\} \times \frac{r 1 r 2}{r 1+r 2} \quad[1 / 2]$
$\mathrm{E}=1.7 \mathrm{~V} \quad[1 / 2]$
and $\mathrm{r}=0.12$ ohm $\quad[1 / 2]$
OR
loop DACD $-1 \times \mathrm{R}+1+1 \times 2=0$ or $\mathrm{R}=3$ ohm - any 1 loop ---[1]
loop DCBD $\rightarrow-2 \mathrm{X} 1-2 \mathrm{XR1}+2=0[1 / 2]$

$$
\begin{equation*}
\mathrm{VB}=1 \mathrm{v} \tag{1/2}
\end{equation*}
$$

[19] ray diagram is wrong and M.P is correct - [1]
Objective smaller aperture
M.P = mo x me alone -[1/2]

Final image at ' D ' [1/2]
[20]direct answer transition D
$E_{D}=-1.5-(-13.6)=12.1 \mathrm{eV}$

$$
\begin{align*}
E & =\frac{h c}{\lambda}=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{102.7 \times 10^{-9}} \\
& =1.94 \times 10^{-18} \mathrm{~J}-\cdots--[1 / 2] \\
& =\frac{1.94 \times 10^{-18}}{1.6 \times 10^{-19}} \mathrm{eV}=12.1 \mathrm{eV} \tag{1/2}
\end{align*}
$$

[21] full wave rectifier circuit -[1]
Input [1/2]
Output [1/2]
[22] State Gauss's law. -----[1]
Fig/explanation $\left[\frac{1}{2}\right]$
Steps ---- $[1 / 2+1 / 2]$
Final expression ---- $\left[\frac{1}{2}\right]$
[23] Biot's Savarts law
Fig/explanation $\left[\frac{1}{2}\right]$
Steps ---- $[1 / 2+1 / 2]$
Final expression ---- $\left[\frac{1}{2}\right]$
$[24] \mathrm{E} 1=-\frac{d \phi}{d t}=-A\left[\frac{1-0}{2-0}\right]=-\left[2.25 \times 10^{-2}\right]$ volt $-[1 / 2]$
$\mathrm{I} 1=\frac{E 1}{R}==\frac{-2.25 \times 10^{-2}}{8.5}=-2.7 \mathrm{~mA}---[1 / 2]$
$\mathrm{E} 2=-A\left[\frac{1-1}{4-2}\right]=0$ volt $-----[1 / 2]$
$\mathrm{I} 2=\frac{E 2}{R}=0$ volt
$\mathrm{E} 3=-A\left[\frac{0-1}{6-4}\right]=-\left[-2.25 \times 10^{-2}\right]$ volt $-[1 / 2]$
$\mathrm{I} 3=\frac{[2.25 \times 10-2]}{8.5}=+2.7 \mathrm{~mA} \quad[1 / 2]$

Graph not necessary

OR

$e 2>e 1$
a)

[b]
b)

[c] $\mathrm{L} 1 \mathrm{dI} / \mathrm{dt} \times \mathrm{I} 1=\mathrm{L} 2 \mathrm{dI} / \mathrm{dt} \times \mathrm{I} 2$

Or $\quad \frac{\mathrm{I} 2}{\mathrm{I} 1}=\frac{\mathrm{L} 1}{\mathrm{~L} 2}$

$$
\begin{align*}
& \therefore \frac{E_{2}}{E_{1}}=\frac{\frac{1}{2} L_{2} I_{2}^{2}}{\frac{1}{2} L_{1} I_{1}^{2}}=\frac{L_{2}}{L_{1}}\left(\frac{I_{2}}{I_{1}}\right)^{2}=\frac{30}{12}\left(\frac{12}{30}\right) \tag{1/2}\\
& =\frac{12}{30}=\frac{2}{2}=0.4 \tag{1/2}
\end{align*}
$$

[25]
The displacement current is due to change in electric flux and in dc, there is no change in electric flux. Hence no displacement current. As a result there being no continuity, capacitor does not conduct. [1]

But in ac, the voltage varies and hence there is change in electric field $[\mathrm{E}=$ v / d].As a result of this there is displacement current [1]
$\mathrm{I}_{\mathrm{d}}=\varepsilon 0 \quad \frac{\mathrm{~d} \psi_{\mathrm{E}}}{\mathrm{dt}} \quad[1]$
[26] ray diagram [1]
Steps ---- $[1 / 2+1 / 2+1 / 2+1 / 2]$
[27]
Steps ---- [1/2]
$\mathrm{K} . \mathrm{E}=1$
P.E =1

Final expression ---- $\left[\frac{1}{2}\right]$
[28] formula or correct substitution

$$
\Delta \mathrm{m}=\left[\begin{array}{ll}
26 \mathrm{x} & 1.007277 \mathrm{u} \quad+28 \mathrm{x} 1.008665 \mathrm{u}]-53.9396 \mathrm{u}----[1+1 / 2]
\end{array}\right.
$$

Mass defect $=0.492222 \mathrm{u}--[1 / 2]$

$$
\mathrm{B} . \mathrm{E}=0.492222 \mathrm{x} 931.5 \mathrm{Mev}[1 / 2]
$$

B.E $=458.5 \mathrm{Mev}---[1 / 2]$
$\mathrm{B} . \mathrm{E} /$ nucleon $=\mathrm{B} . \mathrm{E} /$ nucleon no. $=471.5 \mathrm{Mev} / 54=8.49 \mathrm{Mev} /$ nucleon
Any 1 final answer is required
[29][i] [c] more in cladding as the refractive index is less
[ii] [d] provide maximum brighter image
[iii][b] $1.5 \times 30^{8} \mathrm{~m} / \mathrm{s}$
[iii][a] $4 \times 10^{-7} \mathrm{~m}$
[iv] [c] total internal reflection
[30] [i]b 1.1 ev
[b] increases
[iii] [b] 4.3 Kohm

OR

[iii] [d] 717 ohm
[iv] [c] fig[c]
[31][a] [i] Region II
$\frac{\sigma 1-\sigma 2}{2 \varepsilon o}$ towards right [formula or direction is needed $\quad\left[\frac{1}{2}+\frac{1}{2}\right]$
Region III
$\frac{\sigma 1+\sigma 2}{2 \varepsilon o}$ towards right
$\left[\frac{1}{2}+\frac{1}{2}\right]$
[b] [i] $C=\frac{\varepsilon_{0 A}}{d}$
$=\frac{8.85 \times 10^{-12} \times 5 \times 10^{-3}}{2.5 \times 10^{-3}} \mathrm{~F}=17.7 \times 10^{-12} \mathrm{~F}---\left[\frac{1}{2}+\frac{1}{2}\right]$
$[\mathrm{ii}] Q=C V=17.7 \times 10^{-12} \times 100 \mathrm{C}=17.7 \times 10^{-10} \mathrm{C}---\left[\frac{1}{2}+\frac{1}{2}\right]$
[iii]
$Q^{1}=\mathrm{kCxv}=8 \times 17.7 \times 10^{-12} \times 100=1.16 \times 10^{-8} \mathrm{C}---\left[\frac{1}{2}+\frac{1}{2}\right]$

OR

[i]

Figure [$\frac{1}{2}$]
$\mathrm{U}_{\mathrm{A}}=0$
$\left[\frac{1}{2}\right]$
$\mathrm{U}_{\mathrm{B}}=\frac{K q 1 q 2}{r 12}$
[$\frac{1}{2}$]
$\mathrm{Uc}=\frac{k q 1 q 3}{r 31}+\frac{k q 2 q 3}{r 23}$
$\left[\frac{1}{2}+\frac{1}{2}\right]$
$\mathrm{U}=\frac{K q 1 q 2}{r 12}+\frac{k q 2 q 3}{r 23}+\frac{k q 3 q 1}{r 31}$
[$\frac{1}{2}$]
[ii][a]
Flux through $\mathrm{S}_{1}, \Phi_{1}=\frac{Q}{\epsilon_{o}}$
Flux through $\mathrm{S}_{2}, \Phi_{2}=\frac{Q+2 Q}{\epsilon_{o}}=\frac{3 Q}{\epsilon_{o}}$ [1/2]
Ratio of flux $=1: 3 \quad 1 / 2]^{\epsilon_{o}}$
No change in flux through S_{1} with dielectric medium inside the sphere $S_{2}[1 / 2]$
[32] [a] phasor diagram [1]
Steps ---- $[1 / 2+1 / 2+1 / 2]$
Circuit diagram alone - [1/2]
Final expression ---- $\left[\frac{1}{2}\right]$
Resonant frequency---steps--- [1]
Final expression---[1/2]
(b) $\frac{\pi}{2}--\frac{\pi}{2}=\pi \quad[1 / 2]$

OR

[a][i] fig. of step down transformer ------[1]
[ii]Electromagnetic induction/mutual induction ---[1]
[iii]Any 2 losses ---[1]
[b]Total resistance $40 \times 0.5=20$ ohm ---[1/2]
$\mathrm{I}=\mathrm{P} / \mathrm{V}=1200 \times 1000 / 4000=300 \mathrm{~A}[1 / 2]$
$\mathrm{P}=I^{2} \mathrm{R}=[300] \times[300] \times 20=1800 \mathrm{Kw}[1 / 2+1 / 2]$
[33] [a]diagram [1]
Steps ---- $[1 / 2+1 / 2+1 / 2+1 / 2+1 / 2]$
Final expression ---- $\left[\frac{1}{2}\right]$
[ii] No - energy depends on the amplitude /frequency of the wave $\left[\frac{1}{2}+\frac{1}{2}\right]$

OR

Huygens's Principle
a ray diagram ------[1]
Explanation in terms of wave front-------[1/2]
condition for maxima

$$
\begin{equation*}
\sin \Theta_{\mathrm{n}}=\frac{[2 n+1]}{d} \frac{\lambda}{2} \quad[\mathrm{n}=1,2,---] \tag{1/2}
\end{equation*}
$$

two differences -----[1]

$$
\begin{aligned}
& {[\mathrm{c}] \sin \theta=\frac{n \lambda}{d} \text { and } \mathrm{n}=1} \\
& \mathrm{~d}=1.4 \times 10^{-6} \mathrm{~m} \quad[1 / 2+1 / 2]
\end{aligned}
$$

